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Abstract. In this paper, we conduct a literature review of laws of
motion based on stochastic search strategies which are mainly focused on
exploring highly dynamic environments. In this regard, stochastic search
strategies represent an interesting alternative to cope with uncertainty
and reduced perceptual capabilities. This study aims to present an intro-
ductory overview of research in terms of directional rules and searching
methods mainly based on bio-inspired approaches. This study critically
examines the role of animal searching behavior applied to random walk
models using stochastic rules and kinesis or taxis. The aim of this study
is to examine existing techniques and to select relevant work on random
walks and analyze their actual contributions. In this regard, we cover a
wide range of displacement events with an orientation mechanism given
by a reactive behavior or a source-seeking behavior. Finally, we conclude
with a discussion concerning the usefulness of using optimal foraging
strategies as a reliable methodology.
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1 Introduction

Stochastic search strategies plays an important role in terms of facing environ-
mental uncertainty. Therefore, the present paper pretends to uncover the most
insightful directional rules inspired by stochastic methods, statistical physics and
random walks. Likewise, we consider these strategies as an emergent phenomenon
(formation of global patterns from solely local interactions) which is a frequent
and fascinating theme in the scientific literature both popular and academic [10].

The aim of this paper is to examine existing techniques and do a compre-
hensive analysis to understand state-of-the-art, trends and research gaps. It is
important to mention that these strategies can be used in the field of robotics
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as exploration and discovery algorithms with the aim to speeding up searching
tasks.

Stochastic search strategies are mainly inspired by optimal foraging theory
which involves animal search behavior as an alternative for facing highly dynamic
environments. Thus, these strategies can be viewed as a correlated process which
may consists of displacements only broken by successive reorientation events.
Strategies such as: Lévy walk, ballistic motion and correlated random walk
are well known examples of foraging strategies, which are subject to statistical
properties derived from Lévy stochastic processes [4,25].

A considerable amount of literature has been published on stochastic search
strategies. These studies have been most extensively applied in the field of biol-
ogy, particularly, in movement ecology [16]. However, an expressed interest has
been shown by robotics researchers for adopting or mimicking specific behaviors
belonging to optimal foraging theory [25].

Recent evidence suggests that search strategies are mainly related to avail-
ability, quality and quantity of publicly accessible data on animal movement and
Artificial Intelligence techniques. Recently, synthetic experiments have shown
that what really matters is where the explorer diffuses, not the manner by which
the explorer gets there [25]. We therefore, decided to concentrate on what we
considered to be some of the more significant developments in stochastic search
models. It is important to mention that for organization purposes, we have split
in two categories as follows: stochastic rules and directional rules (taxes).

2 Stochastic Rules

In this section, we will explain a group of strategies related to biological foraging.
In this regard, the traditional concept of random search plays an important role
introduced by the optimal foraging theory [25]. Central to the entire discipline
of optimal foraging is the concept of stochastic cause-effect response, which is
determined by what we could call a “complex environment3” [12].

One of the most significant current hypothesis in the biological field states
that natural mechanisms should drive foraging organisms to maximize their
energy intake. This model is well known as optimal foraging theory [25]. Thus, a
organism is either a searcher, e.g., forager, predator, parasite, pollinator or it is
a target, e.g., prey or food. It is necessary here to clarify exactly what is meant
by a searcher. In this study, the term searcher will be used as a computational
or embodied agent. Throughout this paper the term uncorrelated refers to the
direction of movement which is completely independent of the previous direction
and unbiased refers to that there is no preferred direction, i.e., the direction
moved at each step is completely random.

3 This term refers to a highly dynamic environment, and it will be used indistinguish-
ably in this paper.
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2.1 Brownian Motion as a Random Walk

The Brownian motion is one of the most widely used random walks and have
been extensively applied for locating resources. Previous studies [6] have shown
that this type of random walk presents explorations over short distances which
can be made in much shorter times than explorations over long distances. In
addition, the random walker tends to explore a given region of space and after
that, it tends to return to the same point many times before finally wandering
away. Therefore, it can be say that the random walker chooses new regions to
explore blindly and it has no any tendency to move toward regions that it has
not occupied before. In general, a Brownian walk has a normal diffusion where
the mean square displacement increases in a linear way [18]. Fig. 1 presents a
plot of simple Brownian walk.

Fig. 1. A two dimensional random walk showing a random walker using Brownian
motion to explore a given region. The random walker chooses new regions to explore
blindly and it has no any tendency to move toward regions that it has not occupied
before.

An important point to note is that extensions to the Brownian model would
include variable speed and/or turning frequency, waiting times between steps,
temporally dependent parameters, interactions between individual walkers, and
allowing movement in three dimensions rather than restricting the model to two
dimensions (See Fig. 2).

2.2 Lattice Model as Random Walk

A lattice model can be considered as an arrangement of points or objects in
a regular periodic pattern in two or three dimensions [26]. The lattice space
between successive steps of the random walk is constant, with every end point
of the random walk being chosen as a grid node. It requires all walking steps to
exactly conform to the lattice of regular grid nodes and each move is restricted
only to one of the adjacent nodes (see Fig. 3 ).
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Fig. 2. Plot of a Brownian motion in three dimensions after 15000 time steps.

Fig. 3. Plot of a two-dimensional lattice random walk. It requires all walking steps to
exactly conform to the lattice of regular grid nodes and each move is restricted only to
one of the adjacent nodes.

A first serious discussion of lattice models can be described from the Chapman-
Kolgomorov equations. This approach can be applied to describe a random walk
on a lattice [25,9]. Similarly, the Pauli master equation describing a random
walker jumping between sites on a lattice is given by

d

dt
Pk =

∑
`

(Wk,`P` −W`,kPk), (1)

where Pk(t) represents the probability of being in state k at time t and Wk,` are
the transition rates to go from site ` to site k. Thus, normal diffusion arises in the
long time limit provided that (1) there is stochasticity (nondeterministic kine-
matics) and that (2) the transition rates have a range with finite variance [25].

2.3 Spiral Searching

There is a considerable amount of literature describing the role of systematic
search rules that provide a set of alternative strategies to random walks. These
studies point out that the classic example of a systematic search strategy is
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moving in the same direction. However, it is possible to find more complicated
rules such as: the Archimedean spiral, also known as circular searches.

An important feature of this approach is the fact that under real conditions
is very unlikely to obtain an almost perfect Archimedean spiral. A plot showing
a spiral strategy is depicted in Fig. 4.

Fig. 4. Plot of an Archimedean spiral showing a series of outwardly concentric circles
connected by linear segments. A searcher returns repeatedly to the starting point of
the search (homing behavior).

Similarly, according to [4] the Archimedean spiral represents one of the most
common searching rules in homing behaviors. In this case, a searcher is able to
follow a spiral pattern during an initial phase, then systematically extends its
range and moves in broad loops returning repeatedly to the starting point of the
search as can be seen in Fig. 4. What is interesting in the results presented in
[28], is that spiral searching paths may work well in clumped landscapes.

In a controlled study of spiral searching, Reynolds in [21], reported that
a spiral search can work in some cases where the navigation of the searcher
were precise enough, and their visual detection ability were reliable enough to
ensure that all areas are explored. However, in some cases targets could be
missed without any chance of encountering them in a second round due to
the path is an ever expanding spiral. Thus, relying on a spiral search pattern
would be disastrous where navigational and detection systems are less than ideal.
This method could be used for short searches, before the inevitable cumulative
navigational error became too large, to allow a true spiral to be maintained [20].

2.4 Lévy Walks

There is a consensus among scientists that the search efficiency depends on
the probability distribution of flight lengths taken by a searcher. These studies
have reported that when the target sites are sparse, an inverse square power-
law distribution of flight lengths corresponding to a Lévy flight, which can be
considered as an optimal strategy.
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Lévy walks are characterized by a distribution function P (lj) ∼ l−µj with
1 < µ ≤ 3 where lj is the flight length and the symbol ∼ refers to the asymptotic
limiting behavior as the relevant quantity goes to infinity or zero [24]. For the
special case when µ ≥ 3 a Gaussian or normal distribution arises due to the
central limit theorem [1].

The exponent of the power-law is named the Lévy index (µ) and controls
the range of correlations in the movement, introducing a family of distributions,
ranging from Brownian motion (µ > 3) to straight-line paths (µ → 1) [4]. In
this regard, a random explorer can present an optimal strategy by selecting the
Lévy index as follows: µopt = 2. Thus, µ ≈ 2 is the optimal value for a search in
any dimension. Fig. 5 provides an example of a Lévy walk using the probability
distribution P (lj) ∼ l−µj and µ ≈ 2.

Fig. 5. Plot of a Lévy walk where Lévy index: µ ≈ 2.

An idealized model which captures some of the essential dynamics of for-
aging was developed by Viswanathan in [24], where target sites are distributed
randomly and the random walker behaves as follows:

1. If a target site lies within a “direct vision” distance rv, then the random
walker moves on a straight line to the nearest target site.

2. If there is no target site within a distance rv, then the random walker chooses
a direction at random and a distance lj from the probability distribution
P (lj) ∼ l−µj . It then incrementally moves to the new point, constantly
looking for a target within a radius rv along its way. If it does not detect a
target, it stops after traversing the distance lj and chooses a new direction
and a new distance lj+1; otherwise, it proceeds to the target as in rule (1).

Detailed examination of the mechanistic links between animal behavior, sta-
tistical patterns of movement and the role of randomness (stochasticity) in
animal movement showed that temporal patterns can emerge at higher levels
in terms of animal movement [2]. Thus, two important lessons can be learned
from the model developed in [24]: (i) a search process of the Lévy-type may
be optimal whenever the searcher have no information at all on the behavior
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of the target (e.g. location, velocity of movement, type of motion, etc.) even if
targets are not uniformly distributed, and (ii)high directional persistence in the
movement may not necessary be related to cues persecution.

According to Bartumeus in [5] points out that the key advantage of a Lévy
walk over other types of walks is restricted to prey density, mobility and size
of the predator relative to the prey. In addition, a Lévy walk can be more
efficient than the classic Brownian motion [24,25]. A comparison of the two
walks reveals that Lévy walks do not consist simply in adding long walks to a
Brownian motion i.e., these two types of motion differ in the whole flight-time
probability distribution. Therefore, it is possible to claim that Lévy walks are
better than Brownian walks when resources are scarce. However, it should be
noted that Brownian motion is not necessarily a null model, it can be considered
as a different searching strategy that is optimal under certain conditions. Fig. 6
compares two paths obtained from a Brownian motion and a Lévy walk.

Fig. 6. A Brownian walker returns many times to previously visited locations. In
contrast, the Lévy walker frequently takes long jumps to unexplored territory.

2.5 Correlated Random Walk

The simplest way to incorporate directional persistence into a random walk
model is introducing correlations (i.e., memory effects) between successive ran-
dom walk steps [25]. Thus, the trajectories generated by correlated random
walk models appear more similar to the empirical data than those generated
by uncorrelated random walks. The correlated random walks (CRWs) appeared
in the study of ecology when short and medium scaled animal movement was
analyzed.

These CRWs have a correlation length or time that can be quantified via
sinuosity and introduced into the random walk as follows: in two dimensions,
typically two random walk step vectors differ only in their angular directions.
The turning angles θj between successive step vectors rj and rj+1 are usually
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chosen from a symmetric distribution. Thus, we can define the mean resultant
as

ρ = 〈cos(θ)〉 . (2)

It is important to note that CRW models have been studied in the con-
text of biological mechanisms that link information processing directly to the
sinuosity parameter ρ. In this regard, the correlation function for CRWs decay
exponentially and hence the memory effects have a finite range. Consequently,
beyond certain spatial and temporal scales CRWs become uncorrelated random
walks and correlations are not strong enough, resulting in a loss of directional
persistence at large spatial and temporal scales.

In another major study an explanatory theory which defines a correlated
random walk is presented in [4]. This research argues that a CRW can be
seen as a model that combines a Gaussian distribution of move lengths (i.e.,
displacement events) with a nonuniform angular distribution of turning angles
(i.e., reorientation events). Likewise, it suggests that the optimization of random
searches mainly depends on the optimal temporal execution of reorientation
events.

These CRW models are able to control directional persistence (i.e., the degree
of correlation in the random walk) via the probability distribution of turning
angles. Preliminary results using a wrapped Cauchy distribution (WCD) for the
turning angles are reported in [13]. See equation 3:

θ =

[
2× arctan

(
(1− ρ)× tan(π × (r − 0.5))

1 + ρ

)]
, (3)

where ρ is the shape parameter (0 ≤ ρ ≤ 1) and r is an uniformly distributed
random variable r ∈ [0, 1]. Directional persistence is controlled by changing
the shape parameter of the WCD (ρ). Thus, for ρ = 0 we obtain an uniform
distribution with no correlation between successive steps (Brownian motion),
and for ρ = 1, we get a delta distribution at 0◦, leading to straight-line searches
(see Fig. 7).

It is also important to note that the simplicity of random walks is method-
ologically attractive. However, these type of random searches result in redundant
paths and may not be applicable to behaviorally sophisticated searchers. There-
fore, many simulations tend to apply correlated random walks to reduce these
redundancies and simulate more realistic movements.

3 Directional Rules

Recent developments in random walks have heightened the need for a better
approach in terms of searching methods. In this regard, it has been suggested
a suitable framework in terms of biological inspired motion e.g., birds, insects,
mammals and parasites [3,2,4]. Likewise, a set of important features need to be
taken into account, for example: external factors (such as cues, obstacles and
targets), information availability (full or partial) [12].
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Fig. 7. Plots showing various degrees of correlation generated by the shape parameter
(0 ≤ ρ ≤ 1).

A large and growing body of literature has investigated a deterministic cause-
effect strategies using an action-reaction behavior e.g., kinesis or taxis [22].

In this section we will focus on examine a group of strategies that depend
on attractants or repellents. Thus, random searchers tend to move according
to certain chemicals attractants in their environment or towards the highest
concentration of resources (biased movement and taxis). In addition, these rules
can be successfully combined with stochastic rules with the aim to improve the
performance of the searching task. It is important to note that these strategies
are in principle based on a chemotactic phenomenon.

3.1 Run-and-tumble Chemotaxis

Chemotaxis can be defined as a biased random walk mainly composed of two
phases. The “run phase” allows the cells to move with a constant velocity; and
the “tumble phase” allows to reorient the cells to a new (random) direction [25].

Recent evidence suggests that Monte Carlo simulations represents a suitable
approach, for determining the effect of directional memory on the efficiency of
“run-and-tumble” in environments with different attractant gradients [17]. Thus,
to evaluate and compare results the authors designed a simple simulation as
follows. First, n bacteria were initially placed (and oriented) at random positions
in a 2D simulation space. Then, attractant concentration was placed in this space
with a linear gradient at point (x, y), which is provided by

C(x, y) = max
{
Cmax − k

√
(x− x0)2 + (y − y0)2, 0

}
, (4)

where k is the gradient, (x0, y0) is the origin and Cmax is the concentration of attractant
at the peak of the gradient. In the presence of a gradient of attractant (or repellent), the
bacteria use temporal comparisons of the attractant concentration over the preceding
above 3–4 seconds to determine if conditions are improving or deteriorating. The cells
compare their average receptor occupancy, approximated by the values of C, between
1 and 4 seconds (s) in the past, 〈C〉1−4, to the average receptor occupancy during the
past 1 s, 〈C〉0−1, to produce the biaser b = 〈C〉0−1 − 〈C〉1−4. If b > 0, the cell reduces
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the tumbling rate Γtumble from the ambient value Γ0 by an amount dependent on b:
Γtumble = Γ0− γf(b), where f(b) is a monotonically increasing function of b and γ is a
sensitivity coefficient that is positive for positive chemotaxis and negative for negative
chemotaxis. The authors in [17] set γ, the sensitivity of the response of the bacterium
to changes in attractant concentration, to 1. Thus, If b < 0, Γtumble is retained at
the ambient value Γ0. And if a bacterium i is in a “run phase”, its orientation θi and
position pi are updated according to the system of equations

θi(t+ 1) = θi(t) + ηDrot, (5)

pi(t+ 1) = pi(t) + v
(
cos θi
sin θi

)
, (6)

where Drot is the rotational diffusion coefficient (set to 0.15 rad2/s), η = N (0, 1)
(N stands for normal distribution) and v is the mean velocity of the bacterium.
Consequently, t is incremented by δt (0.1s) and then, a random number r between
0 and 1 is compared to 1/Γtumble, if r < 1/Γtumble then the cell tumbles and chooses
a new direction

θi(t+ 1) = θi(t) + ϑtumbleDrot, (7)

where ϑtumble is the directional persistence parameter. If ϑtumble = 0 then the new
direction is identical to the previous direction (no reorientation). Large values of ϑtumble
result in the new direction being independent of the old direction (perfect reorienta-
tion). Fig. 8 illustrates an example of the “run-and-tumble” chemotaxis strategy.

Fig. 8. In this “run-and-tumble” model, a group of bacterial cells drift towards spatial
regions with high nutrient concentration for growth and survival.

3.2 Infotaxis

Infotaxis is focused on finding sources of particles transported in a random environment
[14]. The main issue is whether a source of particles can be located when the only clues
of its presence are rare detections? An good attempt to answer the question is a study
carried out by Vergassola in [23].

It is possible to define the infotaxis strategy as a searching algorithm designed to
work under an environment with sporadic cues and partial information; the process can
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be thought of as acquisition of information on source location, so that information plays
an important role similar to concentration in chemotaxis. Consequently, the infotaxis
strategy locally maximizes the expected rate of information gain. In general terms, the
infotaxis can be considered as a strategy for searching without gradients. Thus, two
main aspects must be taken into account. On one hand, new actions should be tried
and the available phase space must be explored ( “exploration”). On the other hand,
this should not be done blindly, e.g., the searcher in this case needs to minimize the
searching time ( “exploitation”). Therefore, infotaxis can be applied more broadly in
the context of searching with sparse information.

In [23] is argued that given a probability distribution P (r0) for the location of the
source, it is possible to show that the expected search time 〈T 〉 is bounded by 〈T 〉 ≥
eS−1, where S is the entropy of Shannon for the distribution S ≡ −

∫
dxP (x) lnP (x).

The latter quantifies how spread-out the distribution is and goes to zero when the
position of the source is localized to one site that is known. The rate of acquisition
of information is quantified by the rate of reduction of entropy. Consequently, the
main problem for the searcher is that the real probability distribution is unknown (to
it) and must be estimated from the available data. As information accumulates, the
entropy of the estimated distribution decreases and with it the expected time to locate
the source. The searcher is faced with conflicting choices of either proceeding with its
current information, or alternatively pausing to gather more information and obtain a
more reliable estimate of the source distribution.

An important point to note is that in the search context, “exploitation” of the
currently estimated Pt(r0) by chasing locations of maximal estimated probability is
very risky, because it can lead off the track. On the other hand, the most conservative
“exploration” approach is to accumulate information before taking any step. This
strategy is safe but not productive and is inferior to more active exploration, for
example, systematic search in a particular sector. Hence, to balance exploration and
exploitation, the searching algorithm needs to be redefined as follows: at each time
step, the searcher chooses the direction that locally maximizes the expected rate of
information acquisition. Specifically, the searcher chooses among the neighboring sites
on a lattice and standing still, the move that maximizes the expected reduction in
entropy of the posterior probability field. The intuitive idea is that entropy decreases
(and thus information accumulates) faster close to the source because cues arrive at a
higher rate. Consequently, tracking the maximum rate of information acquisition will
guide the searcher to the source (see Fig. 9).

The authors in [23], estimate the variation of entropy expected upon moving to one
of the neighboring points rj (or standing still) as:

∆S(r 7→ rj) = Pt(rj) [−S] + [1− Pt(rj)][ρ0(rj)∆S0 + ρ1(rj)∆S1 + . . .]. (8)

The first term on the right-hand side corresponds to finding the source, that is, Pt+1

becoming a δ function and entropy becoming zero. The second term on the right-hand
side refers to the alternative case when the source is not found at rj . Symbols ρk(rj)
denote the probability that k detections be made at rj during a time-step ∆t. The
symbols ∆Sk in the equation denote the change of entropy between the fields Pt+1(r0)
and Pt(r0). The first term on the right-hand side of the equation is the exploitative
term, weighing only the event that the source is found at the point rj and favoring
motion to maximum likelihood points. The second term on the right-hand side of
the equation is the information gain from receiving additional cues. Thus, infotaxis
naturally combines exploitative and exploratory tendencies [23].
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Fig. 9. A computer simulation showing a searcher pausing to gather more information.
Thus, it can obtain a more reliable estimate of the source distribution.

As discussed previously, the gain mostly arises when the searcher is close to the
source and its wandering is slightly reduced. Fig. 10 provides an infotactic trajectory
toward an emitting source.

Fig. 10. A plot showing an infotactic trajectory toward an emitting source. When the
searcher is close to the source it starts to wander. The starting point was set to (0,0).

An important point to note is that having multiple sources can generate conflicts
and ambiguities. In this case, the searcher may get stuck by contradictory clues making
its task more difficult [14].

4 Discussion

The main problem encountered with all these strategies is that it is not possible to
find a general methodology to cope with different environments, so that a searcher is
highly sensitive to its sensing and orientating abilities. In this regard, research in the
area of random walks is far from complete [9]. There remains a wealth of exploration
problems relating to random walks and searching strategies that have yet to be solved
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(for example, how to select the best strategy for exploring a complex environment)
and, of course, an almost endless supply of biological systems that are amenable to
modeling using exploration techniques.

Similarly, according to the No Free Lunch Theorem of Optimization (NFLT) [27],
which states that there is no one model that works best for every problem. The
assumptions of a great model for one problem may not hold for another problem,
so it is common in this searching context to try multiple strategies or models and find
one that works best for a particular problem or environment.

Fig. 11 presents an overview of some existing techniques based on stochastic search
strategies. These strategies are divided into two categories: stochastic rules and direc-
tional rules. It is important to note that we have added a set of extra taxis rules such
as: Lévy taxis [19], Optimotaxis [15], Extremotaxis [7] and Rheotaxis [8].

Fig. 11. A diagram showing search strategies divided into two categories: stochastic
rules and directional rules.

5 Conclusions

In this paper, we have conducted an introductory overview of research of some existing
techniques related to laws of motion based on stochastic search strategies. We have
classified this study in two main categories: stochastic rules and directional rules,
similarly, this survey has presented a variety of computer algorithms that have been
assessed in terms of simulation. This manuscript has explained the central importance
of using bio-inspired strategies with the aim to enhance our understanding of stochastic
search strategies.

This work contributes to existing knowledge by adding and updating with current
literature that provide with several practical applications. A number of caveats need
to be noted regarding the present study. For instance, the random searcher is highly
sensitive to its sensing and orientating abilities. Small changes in the environment can
have a critical impact on the probability of success. In such case, the variability in the
environment cannot be ignored.

Finally, We are well aware that there are many other techniques that we have not
mentioned in this work. However, we consider that this introductory review is a good
start point. Please refer to[11] for an in depth analysis about searching strategies.
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15. Mesquita, A., Hespanha, J., Åstrom, K.: Optimotaxis: A stochastic multi-agent
optimization procedure with point measurements. Hybrid Systems: Computation
and Control pp. 358–371 (2008)

16. Morales, J., Haydon, D., Frair, J., Holsinger, K., Fryxell, J.: Extracting more out of
relocation data: building movement models as mixtures of random walks. Ecology
85(9), 2436–2445 (2004)

17. Nicolau Jr, D., Armitage, J., Maini, P.: Directional persistence and the optimality
of run-and-tumble chemotaxis. Computational Biology and Chemistry 33(4), 269–
274 (2009)

56

C. A. Piña-García, Dongbing Gu, Carlos Gershenson, J. Mario Siqueiros-Garca, E. Robles-Belmont

Research in Computing Science 121 (2016) ISSN 1870-4069

http://bit.ly/1ZZxGPV
http://bit.ly/1ZZxGPV


18. Nurzaman, S., Matsumoto, Y., Nakamura, Y., Shirai, K., Koizumi, S., Ishiguro,
H.: An adaptive switching behavior between levy and Brownian random search in
a mobile robot based on biological fluctuation. In: Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on. pp. 1927–1934. IEEE (1927)

19. Pasternak, Z., Bartumeus, F., Grasso, F.: Lévy-taxis: a novel search strategy for
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